Commit c50a63f5 authored by Miklós Homolya's avatar Miklós Homolya

Exercise 13 - Jacobi version

parent 641b58ba
main: main.cu aux.cu aux.h Makefile
nvcc -o main main.cu aux.cu --ptxas-options=-v --use_fast_math --compiler-options -Wall -lopencv_highgui -lopencv_core
// ###
// ###
// ### Practical Course: GPU Programming in Computer Vision
// ###
// ###
// ### Technical University Munich, Computer Vision Group
// ### Winter Semester 2013/2014, March 3 - April 4
// ###
// ###
// ### Evgeny Strekalovskiy, Maria Klodt, Jan Stuehmer, Mohamed Souiai
// ###
// ###
// ###
// ### THIS FILE IS SUPPOSED TO REMAIN UNCHANGED
// ###
// ###
#include "aux.h"
#include <cstdlib>
#include <iostream>
using std::stringstream;
using std::cerr;
using std::cout;
using std::endl;
using std::string;
// parameter processing: template specialization for T=bool
template<>
bool getParam<bool>(std::string param, bool &var, int argc, char **argv)
{
const char *c_param = param.c_str();
for(int i=argc-1; i>=1; i--)
{
if (argv[i][0]!='-') continue;
if (strcmp(argv[i]+1, c_param)==0)
{
if (!(i+1<argc) || argv[i+1][0]=='-') { var = true; return true; }
std::stringstream ss;
ss << argv[i+1];
ss >> var;
return (bool)ss;
}
}
return false;
}
// opencv helpers
void convert_layered_to_interleaved(float *aOut, const float *aIn, int w, int h, int nc)
{
if (nc==1) { memcpy(aOut, aIn, w*h*sizeof(float)); return; }
size_t nOmega = (size_t)w*h;
for (int y=0; y<h; y++)
{
for (int x=0; x<w; x++)
{
for (int c=0; c<nc; c++)
{
aOut[(nc-1-c) + nc*(x + (size_t)w*y)] = aIn[x + (size_t)w*y + nOmega*c];
}
}
}
}
void convert_layered_to_mat(cv::Mat &mOut, const float *aIn)
{
convert_layered_to_interleaved((float*)mOut.data, aIn, mOut.cols, mOut.rows, mOut.channels());
}
void convert_interleaved_to_layered(float *aOut, const float *aIn, int w, int h, int nc)
{
if (nc==1) { memcpy(aOut, aIn, w*h*sizeof(float)); return; }
size_t nOmega = (size_t)w*h;
for (int y=0; y<h; y++)
{
for (int x=0; x<w; x++)
{
for (int c=0; c<nc; c++)
{
aOut[x + (size_t)w*y + nOmega*c] = aIn[(nc-1-c) + nc*(x + (size_t)w*y)];
}
}
}
}
void convert_mat_to_layered(float *aOut, const cv::Mat &mIn)
{
convert_interleaved_to_layered(aOut, (float*)mIn.data, mIn.cols, mIn.rows, mIn.channels());
}
void showImage(string title, const cv::Mat &mat, int x, int y)
{
const char *wTitle = title.c_str();
cv::namedWindow(wTitle, CV_WINDOW_AUTOSIZE);
cvMoveWindow(wTitle, x, y);
cv::imshow(wTitle, mat);
}
// adding Gaussian noise
float noise(float sigma)
{
float x1 = (float)rand()/RAND_MAX;
float x2 = (float)rand()/RAND_MAX;
return sigma * sqrtf(-2*log(std::max(x1,0.000001f)))*cosf(2*M_PI*x2);
}
void addNoise(cv::Mat &m, float sigma)
{
float *data = (float*)m.data;
int w = m.cols;
int h = m.rows;
int nc = m.channels();
size_t n = (size_t)w*h*nc;
for(size_t i=0; i<n; i++)
{
data[i] += noise(sigma);
}
}
// cuda error checking
string prev_file = "";
int prev_line = 0;
void cuda_check(string file, int line)
{
cudaError_t e = cudaGetLastError();
if (e != cudaSuccess)
{
cout << endl << file << ", line " << line << ": " << cudaGetErrorString(e) << " (" << e << ")" << endl;
if (prev_line>0) cout << "Previous CUDA call:" << endl << prev_file << ", line " << prev_line << endl;
exit(1);
}
prev_file = file;
prev_line = line;
}
// ###
// ###
// ### Practical Course: GPU Programming in Computer Vision
// ###
// ###
// ### Technical University Munich, Computer Vision Group
// ### Winter Semester 2013/2014, March 3 - April 4
// ###
// ###
// ### Evgeny Strekalovskiy, Maria Klodt, Jan Stuehmer, Mohamed Souiai
// ###
// ###
// ###
// ### THIS FILE IS SUPPOSED TO REMAIN UNCHANGED
// ###
// ###
#ifndef AUX_H
#define AUX_H
#include <cuda_runtime.h>
#include <ctime>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <string>
#include <sstream>
// parameter processing
template<typename T>
bool getParam(std::string param, T &var, int argc, char **argv)
{
const char *c_param = param.c_str();
for(int i=argc-1; i>=1; i--)
{
if (argv[i][0]!='-') continue;
if (strcmp(argv[i]+1, c_param)==0)
{
if (!(i+1<argc)) continue;
std::stringstream ss;
ss << argv[i+1];
ss >> var;
return (bool)ss;
}
}
return false;
}
// opencv helpers
void convert_mat_to_layered(float *aOut, const cv::Mat &mIn);
void convert_layered_to_mat(cv::Mat &mOut, const float *aIn);
void showImage(std::string title, const cv::Mat &mat, int x, int y);
// adding Gaussian noise
void addNoise(cv::Mat &m, float sigma);
// measuring time
class Timer
{
public:
Timer() : tStart(0), running(false), sec(0.f)
{
}
void start()
{
tStart = clock();
running = true;
}
void end()
{
if (!running) { sec = 0; return; }
cudaDeviceSynchronize();
clock_t tEnd = clock();
sec = (float)(tEnd - tStart) / CLOCKS_PER_SEC;
running = false;
}
float get()
{
if (running) end();
return sec;
}
private:
clock_t tStart;
bool running;
float sec;
};
// cuda error checking
#define CUDA_CHECK cuda_check(__FILE__,__LINE__)
void cuda_check(std::string file, int line);
#endif // AUX_H
// ###
// ###
// ### Practical Course: GPU Programming in Computer Vision
// ###
// ###
// ### Technical University Munich, Computer Vision Group
// ### Winter Semester 2013/2014, March 3 - April 4
// ###
// ###
// ### Evgeny Strekalovskiy, Maria Klodt, Jan Stuehmer, Mohamed Souiai
// ###
// ###
// ###
// ###
// ###
// ### Miklos Homolya, miklos.homolya@tum.de, p056
// ### Ravikishore Kommajosyula, r.kommajosyula@tum.de, p057
// ### Gaurav Kukreja, gaurav.kukreja@tum.de, p058
// ###
// ###
#include "aux.h"
#include <iostream>
using namespace std;
// uncomment to use the camera
//#define CAMERA
template<typename T>
__device__ __host__ T min(T a, T b)
{
return (a < b) ? a : b;
}
template<typename T>
__device__ __host__ T max(T a, T b)
{
return (a > b) ? a : b;
}
template<typename T>
__device__ __host__ T clamp(T m, T x, T M)
{
return max(m, min(x, M));
}
__device__ __host__ float huber(float s, float epsilon)
{
return 1.0F / max(epsilon, s);
//return 1.0F;
//return expf(-s*s / epsilon) / epsilon;
}
__global__ void diffusivity(float *U, float *G, int w, int h, int nc, float epsilon)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
if (x < w && y < h) {
float g2 = 0;
for (int c = 0; c < nc; c++) {
int i = x + (size_t)w*y + (size_t)w*h*c;
float ux = ((x < w-1) ? (U[i + 1] - U[i]) : 0);
float uy = ((y < h-1) ? (U[i + w] - U[i]) : 0);
g2 += ux*ux + uy*uy;
}
G[x + (size_t)w*y] = huber(sqrtf(g2), epsilon);
}
}
__global__ void jacobi_update(float *U, float *F, float *G, int w, int h, int nc, float lambda)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
for (int c = 0; c < nc; c++) {
float gu = 0, g = 0;
if (x < w && y < h) {
int i = x + (size_t)w*y;
int j = x + (size_t)w*y + (size_t)w*h*c;
if (x+1 < w) { // g_r
gu += G[i + 1] * U[j + 1];
g += G[i + 1];
}
if (x > 0) { // g_l
gu += G[i - 1] * U[j - 1];
g += G[i - 1];
}
if (y+1 < h) { // g_u
gu += G[i + w] * U[j + w];
g += G[i + w];
}
if (y > 0) { // g_d
gu += G[i - w] * U[j - w];
g += G[i - w];
}
}
__syncthreads();
if (x < w && y < h) {
int j = x + (size_t)w*y + (size_t)w*h*c;
U[j] = (2 * F[j] + lambda * gu) / (2 + lambda * g);
}
}
}
inline int div_ceil(int n, int b) { return (n + b - 1) / b; }
inline dim3 make_grid(dim3 whole, dim3 block)
{
return dim3(div_ceil(whole.x, block.x),
div_ceil(whole.y, block.y),
div_ceil(whole.z, block.z));
}
int main(int argc, char **argv)
{
// Before the GPU can process your kernels, a so called "CUDA context" must be initialized
// This happens on the very first call to a CUDA function, and takes some time (around half a second)
// We will do it right here, so that the run time measurements are accurate
cudaDeviceSynchronize(); CUDA_CHECK;
// Reading command line parameters:
// getParam("param", var, argc, argv) looks whether "-param xyz" is specified, and if so stores the value "xyz" in "var"
// If "-param" is not specified, the value of "var" remains unchanged
//
// return value: getParam("param", ...) returns true if "-param" is specified, and false otherwise
#ifdef CAMERA
#else
// input image
string image = "";
bool ret = getParam("i", image, argc, argv);
if (!ret) cerr << "ERROR: no image specified" << endl;
if (argc <= 1) { cout << "Usage: " << argv[0] << " -i <image> [-repeats <repeats>] [-gray]" << endl; return 1; }
#endif
// number of computation repetitions to get a better run time measurement
int repeats = 1;
getParam("repeats", repeats, argc, argv);
cout << "repeats: " << repeats << endl;
// load the input image as grayscale if "-gray" is specifed
bool gray = false;
getParam("gray", gray, argc, argv);
cout << "gray: " << gray << endl;
// ### Define your own parameters here as needed
float sigma = 0.1;
getParam("sigma", sigma, argc, argv);
cout << "σ: " << sigma << endl;
float epsilon = 0.01;
getParam("epsilon", epsilon, argc, argv);
cout << "ε: " << epsilon << endl;
float lambda = 0.25;
getParam("lambda", lambda, argc, argv);
cout << "λ: " << lambda << endl;
int N = 120;
getParam("N", N, argc, argv);
cout << "N: " << N << endl;
// Init camera / Load input image
#ifdef CAMERA
// Init camera
cv::VideoCapture camera(0);
if(!camera.isOpened()) { cerr << "ERROR: Could not open camera" << endl; return 1; }
int camW = 640;
int camH = 480;
camera.set(CV_CAP_PROP_FRAME_WIDTH,camW);
camera.set(CV_CAP_PROP_FRAME_HEIGHT,camH);
// read in first frame to get the dimensions
cv::Mat mIn;
camera >> mIn;
#else
// Load the input image using opencv (load as grayscale if "gray==true", otherwise as is (may be color or grayscale))
cv::Mat mIn = cv::imread(image.c_str(), (gray? CV_LOAD_IMAGE_GRAYSCALE : -1));
// check
if (mIn.data == NULL) { cerr << "ERROR: Could not load image " << image << endl; return 1; }
#endif
// convert to float representation (opencv loads image values as single bytes by default)
mIn.convertTo(mIn,CV_32F);
// convert range of each channel to [0,1] (opencv default is [0,255])
mIn /= 255.f;
// get image dimensions
int w = mIn.cols; // width
int h = mIn.rows; // height
int nc = mIn.channels(); // number of channels
cout << "image: " << w << " x " << h << endl;
// add noise
addNoise(mIn, sigma);
// Set the output image format
cv::Mat mOut(h,w,mIn.type()); // mOut will have the same number of channels as the input image, nc layers
// ### Define your own output images here as needed
// Allocate arrays
// input/output image width: w
// input/output image height: h
// input image number of channels: nc
// output image number of channels: mOut.channels(), as defined above (nc, 3, or 1)
// allocate raw input image array
float *imgIn = new float[(size_t)w*h*nc];
size_t imageBytes = (size_t)w*h*nc*sizeof(float);
// allocate raw output array (the computation result will be stored in this array, then later converted to mOut for displaying)
float *imgOut = new float[(size_t)w*h*mOut.channels()];
// For camera mode: Make a loop to read in camera frames
#ifdef CAMERA
// Read a camera image frame every 30 milliseconds:
// cv::waitKey(30) waits 30 milliseconds for a keyboard input,
// returns a value <0 if no key is pressed during this time, returns immediately with a value >=0 if a key is pressed
while (cv::waitKey(30) < 0)
{
// Get camera image
camera >> mIn;
// convert to float representation (opencv loads image values as single bytes by default)
mIn.convertTo(mIn,CV_32F);
// convert range of each channel to [0,1] (opencv default is [0,255])
mIn /= 255.f;
#endif
// Init raw input image array
// opencv images are interleaved: rgb rgb rgb... (actually bgr bgr bgr...)
// But for CUDA it's better to work with layered images: rrr... ggg... bbb...
// So we will convert as necessary, using interleaved "cv::Mat" for loading/saving/displaying, and layered "float*" for CUDA computations
convert_mat_to_layered (imgIn, mIn);
dim3 block(32, 16);
dim3 grid = make_grid(dim3(w, h, 1), block);
Timer timer; timer.start();
float *d_U, *d_F, *d_G;
cudaMalloc(&d_U, imageBytes);
cudaMalloc(&d_F, imageBytes);
cudaMalloc(&d_G, (size_t)w*h*sizeof(float));
cudaMemcpy(d_U, imgIn, imageBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_F, imgIn, imageBytes, cudaMemcpyHostToDevice);
for (int n = 0; n < N; n++) {
diffusivity<<< grid, block >>>(d_U, d_G, w, h, nc, epsilon);
jacobi_update<<< grid, block >>>(d_U, d_F, d_G, w, h, nc, lambda);
}
cudaMemcpy(imgOut, d_U, imageBytes, cudaMemcpyDeviceToHost);
cudaFree(d_U);
cudaFree(d_F);
cudaFree(d_G);
timer.end(); float t = timer.get(); // elapsed time in seconds
cout << "time: " << t*1000 << " ms" << endl;
// show input image
showImage("Input", mIn, 100, 100); // show at position (x_from_left=100,y_from_above=100)
// show output image: first convert to interleaved opencv format from the layered raw array
convert_layered_to_mat(mOut, imgOut);
showImage("Output", mOut, 100+w+40, 100);
// ### Display your own output images here as needed
#ifdef CAMERA
// end of camera loop
}
#else
// wait for key inputs
cv::waitKey(0);
#endif
// save input and result
cv::imwrite("image_input.png",mIn*255.f); // "imwrite" assumes channel range [0,255]
cv::imwrite("image_result.png",mOut*255.f);
// free allocated arrays
delete[] imgIn;
delete[] imgOut;
// close all opencv windows
cvDestroyAllWindows();
return 0;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment