Commit 7fb48037 authored by Miklós Homolya's avatar Miklós Homolya

Mathematics

parent 1fca9ee5
......@@ -191,9 +191,23 @@ Technical University of Munich \\ % Your institution for the title page
\frametitle{Primal-Dual Method}
\emph{Motivation:} Gradient descent solver has slow convergence.
\\~\\
Primal variable $ u $
Primal variable $ u \in \mathcal{C} $
\begin{equation*}
u : \Omega \to [0; 1]
\end{equation*}
Dual variable $ \xi \in \mathcal{K} $ \quad ($ \xi \sim \mathrm{grad} \, u $)
\begin{equation*}
\xi : \Omega \to \left\{ (x, y) : x^2 + y^2 \le 1 \right\}
\end{equation*}
Dual variable $ \xi $ (roughly similar to $ \mathrm{grad} \, u $):
Algorithm
\begin{align*}
\xi^{n+1} &= \Pi_{\mathcal{K}}(\xi^n - \sigma \nabla \bar{u}^n)
\\
u^{n+1} &= \Pi_{\mathcal{C}}(u^n - \tau (\mathrm{div} \xi^{n+1} + f))
\\
\bar{u}^{n+1} &= u^{n+1} + (u^{n+1} - u^n) = 2 u^{n+1} - u^n
\end{align*}
\end{frame}
\section{CUDA Implementation}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment