Commit 39d22582 authored by Miklós Homolya's avatar Miklós Homolya

Mathematics

parent aa426ddd
......@@ -122,6 +122,71 @@ Technical University of Munich \\ % Your institution for the title page
\section{Algorithm}
\subsection{Binary Image Segmentation}
\begin{frame}
\frametitle{Binary Image Segmentation}
Energy functional
\begin{equation*}
E_1(u) := \int_{{\rm I\!R}^N} \left| \nabla u \right|
+ \lambda \int_{{\rm I\!R}^N} \left| u(x) - f(x) \right| \, dx
\end{equation*}
Functional derivative
\begin{equation*}
\frac{\delta E_1}{\delta u} = - \, \mathrm{div} \left( {\frac{\nabla u}{| \nabla u |}} \right)
+ \lambda \frac{u - f}{|u - f|}
\end{equation*}
Gradient descent solver \\~\\
\begin{thebibliography}{99}
\bibitem[Chan, 2005]{} Tony F. Chan, Selim Esedoglu and Mila Nikolova (2005)
\newblock Finding the Global Minimum for Binary Image Restoration
\end{thebibliography}
\end{frame}
\begin{frame}
\frametitle{Sample Result}
\end{frame}
\subsection{Grayscale Image Segmentation}
\begin{frame}
\frametitle{Grayscale Image Segmentation}
Euler-Lagrange equation
\begin{equation*}
\mathrm{div} \left( {\frac{\nabla u}{| \nabla u |}} \right)
- \lambda \, s(x) - \alpha \, \nu'(u) = 0
\end{equation*}
where $ s(x) = (c_1 - f(x))^2 - (c_2 - f(x))^2 $, and $ \alpha \, \nu'(u) $ forces $ u $ into $ [0; 1] $.
\\~\\
Gradient descent solver
\\~\\
\begin{thebibliography}{99}
\bibitem[Chan, 2004]{} Tony F. Chan, Selim Esedoglu and Mila Nikolova (2004)
\newblock Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models
\end{thebibliography}
\end{frame}
\begin{frame}
\frametitle{Sample Result}
\end{frame}
\subsection{Primal-Dual Method}
\begin{frame}
\frametitle{Primal-Dual Method}
\emph{Motivation:} Gradient descent solver has slow convergence.
\\~\\
Primal variable $ u $
Dual variable $ \xi $ (roughly similar to $ \mathrm{grad} \, u $):
\end{frame}
\section{CUDA Implementation}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment