Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
C
cuda_lab
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Gaurav Kukreja
cuda_lab
Commits
7e94e981
Commit
7e94e981
authored
Mar 20, 2014
by
Gaurav Kukreja
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
first (dirty) version of opengl interoperability
Signed-off-by:
Gaurav Kukreja
<
gmkukreja@gmail.com
>
parent
1db2e79a
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
177 additions
and
51 deletions
+177
-51
Makefile
miklos/project/Makefile
+1
-1
main.cu
miklos/project/main.cu
+176
-50
No files found.
miklos/project/Makefile
View file @
7e94e981
main
:
main.cu aux.cu aux.h Makefile
main
:
main.cu aux.cu aux.h Makefile
nvcc
-o
main main.cu aux.cu
--ptxas-options
=
-v
--use_fast_math
--compiler-options
-Wall
-lopencv_highgui
-lopencv_core
nvcc
-o
main main.cu aux.cu
--ptxas-options
=
-v
--use_fast_math
--compiler-options
-Wall
-lopencv_highgui
-lopencv_core
-lGL
-lglut
miklos/project/main.cu
View file @
7e94e981
...
@@ -25,10 +25,46 @@
...
@@ -25,10 +25,46 @@
#include "aux.h"
#include "aux.h"
#include <iostream>
#include <iostream>
// #include <GLTools.h> // OpenGL toolkit
// #include <GLShaderManager.h> // Shader Manager Class
#define GL_GLEXT_PROTOTYPES
#include <GL/gl.h>
#include <GL/glut.h> // Windows FreeGlut equivalent
#include <GL/glext.h>
#include "cuda_gl_interop.h"
using namespace std;
using namespace std;
// uncomment to use the camera
// uncomment to use the camera
//#define CAMERA
#define CAMERA
/*********************************************************************
*** Global Variables ******
*********************************************************************/
// Pointers to Device Memory for Input, Output and Intermediate images
float *d_F, *d_U, *d_vx, *d_vy;
// Variables for OpenGL Interoperability
GLuint outputVBO;
struct cudaGraphicsResource* outputVBO_CUDA;
int repeats;
bool gray;
float lambda;
float tau;
int N;
cv::VideoCapture camera(0);
cv::Mat mIn;
float *imgIn;
int w, h, nc;
template<typename T>
template<typename T>
__device__ __host__ T min(T a, T b)
__device__ __host__ T min(T a, T b)
...
@@ -49,6 +85,8 @@ __device__ __host__ T clamp(T m, T x, T M)
...
@@ -49,6 +85,8 @@ __device__ __host__ T clamp(T m, T x, T M)
}
}
/**
/**
* Computes the normalized gradient.
* Computes the normalized gradient.
*
*
...
@@ -81,6 +119,7 @@ __global__ void norm_grad(float *U, float *vx, float *vy, int w, int h)
...
@@ -81,6 +119,7 @@ __global__ void norm_grad(float *U, float *vx, float *vy, int w, int h)
/**
/**
* Update approximation.
* Update approximation.
*
*
* @param output
* @param U approximation of solution (single-channel)
* @param U approximation of solution (single-channel)
* @param F original input image (single-channel)
* @param F original input image (single-channel)
* @param vx normalized gradient of U (x-coordinate)
* @param vx normalized gradient of U (x-coordinate)
...
@@ -90,7 +129,7 @@ __global__ void norm_grad(float *U, float *vx, float *vy, int w, int h)
...
@@ -90,7 +129,7 @@ __global__ void norm_grad(float *U, float *vx, float *vy, int w, int h)
* @param lambda weight of 'similarity' energy component
* @param lambda weight of 'similarity' energy component
* @param tau update coefficient
* @param tau update coefficient
*/
*/
__global__ void update(float *U, float *F, float *vx, float *vy,
__global__ void update(float
* output, float
*U, float *F, float *vx, float *vy,
int w, int h, float lambda, float tau)
int w, int h, float lambda, float tau)
{
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int x = threadIdx.x + blockDim.x * blockIdx.x;
...
@@ -111,7 +150,7 @@ __global__ void update(float *U, float *F, float *vx, float *vy,
...
@@ -111,7 +150,7 @@ __global__ void update(float *U, float *F, float *vx, float *vy,
float div_v = dx_vx + dy_vy;
float div_v = dx_vx + dy_vy;
// explicit Euler update rule
// explicit Euler update rule
U[i] +=
tau * (lambda * d + div_v);
output[i] = U[i] +
tau * (lambda * d + div_v);
}
}
}
}
...
@@ -124,6 +163,11 @@ inline dim3 make_grid(dim3 whole, dim3 block)
...
@@ -124,6 +163,11 @@ inline dim3 make_grid(dim3 whole, dim3 block)
div_ceil(whole.z, block.z));
div_ceil(whole.z, block.z));
}
}
void display();
void bye() {
cout << "bye!\n";
}
int main(int argc, char **argv)
int main(int argc, char **argv)
{
{
...
@@ -132,9 +176,6 @@ int main(int argc, char **argv)
...
@@ -132,9 +176,6 @@ int main(int argc, char **argv)
// We will do it right here, so that the run time measurements are accurate
// We will do it right here, so that the run time measurements are accurate
cudaDeviceSynchronize(); CUDA_CHECK;
cudaDeviceSynchronize(); CUDA_CHECK;
// Reading command line parameters:
// Reading command line parameters:
// getParam("param", var, argc, argv) looks whether "-param xyz" is specified, and if so stores the value "xyz" in "var"
// getParam("param", var, argc, argv) looks whether "-param xyz" is specified, and if so stores the value "xyz" in "var"
// If "-param" is not specified, the value of "var" remains unchanged
// If "-param" is not specified, the value of "var" remains unchanged
...
@@ -149,48 +190,47 @@ int main(int argc, char **argv)
...
@@ -149,48 +190,47 @@ int main(int argc, char **argv)
if (!ret) cerr << "ERROR: no image specified" << endl;
if (!ret) cerr << "ERROR: no image specified" << endl;
if (argc <= 1) { cout << "Usage: " << argv[0] << " -i <image> [-repeats <repeats>] [-gray]" << endl; return 1; }
if (argc <= 1) { cout << "Usage: " << argv[0] << " -i <image> [-repeats <repeats>] [-gray]" << endl; return 1; }
#endif
#endif
// number of computation repetitions to get a better run time measurement
// number of computation repetitions to get a better run time measurement
int
repeats = 1;
repeats = 1;
getParam("repeats", repeats, argc, argv);
getParam("repeats", repeats, argc, argv);
cout << "repeats: " << repeats << endl;
cout << "repeats: " << repeats << endl;
// load the input image as grayscale if "-gray" is specifed
// load the input image as grayscale if "-gray" is specifed
bool
gray = true;
gray = true;
// always true: getParam("gray", gray, argc, argv);
// always true: getParam("gray", gray, argc, argv);
cout << "gray: " << gray << endl;
cout << "gray: " << gray << endl;
// ### Define your own parameters here as needed
// ### Define your own parameters here as needed
float
lambda = 0.8;
lambda = 0.8;
getParam("lambda", lambda, argc, argv);
getParam("lambda", lambda, argc, argv);
cout << "λ: " << lambda << endl;
cout << "λ: " << lambda << endl;
float
tau = 0.01;
tau = 0.01;
getParam("tau", tau, argc, argv);
getParam("tau", tau, argc, argv);
cout << "τ: " << tau << endl;
cout << "τ: " << tau << endl;
int
N = 2000;
N = 2000;
getParam("N", N, argc, argv);
getParam("N", N, argc, argv);
cout << "N: " << N << endl;
cout << "N: " << N << endl;
// Init camera / Load input image
// Init camera / Load input image
#ifdef CAMERA
#ifdef CAMERA
// Init camera
// Init camera
cv::VideoCapture camera(0);
//
cv::VideoCapture camera(0);
if(!camera.isOpened()) { cerr << "ERROR: Could not open camera" << endl; return 1; }
if(!camera.isOpened()) { cerr << "ERROR: Could not open camera" << endl; return 1; }
int camW = 640;
int camW = 640;
int camH = 480;
int camH = 480;
camera.set(CV_CAP_PROP_FRAME_WIDTH,camW);
camera.set(CV_CAP_PROP_FRAME_WIDTH,camW);
camera.set(CV_CAP_PROP_FRAME_HEIGHT,camH);
camera.set(CV_CAP_PROP_FRAME_HEIGHT,camH);
// read in first frame to get the dimensions
// read in first frame to get the dimensions
cv::Mat mIn;
//
cv::Mat mIn;
camera >> mIn;
camera >> mIn;
#else
#else
// Load the input image using opencv (load as grayscale if "gray==true", otherwise as is (may be color or grayscale))
// Load the input image using opencv (load as grayscale if "gray==true", otherwise as is (may be color or grayscale))
cv::Mat mIn = cv::imread(image.c_str(), (gray? CV_LOAD_IMAGE_GRAYSCALE : -1));
// cv::Mat mIn = cv::imread(image.c_str(), (gray? CV_LOAD_IMAGE_GRAYSCALE : -1));
mIn = cv::imread(image.c_str(), (gray? CV_LOAD_IMAGE_GRAYSCALE : -1));
// check
// check
if (mIn.data == NULL) { cerr << "ERROR: Could not load image " << image << endl; return 1; }
if (mIn.data == NULL) { cerr << "ERROR: Could not load image " << image << endl; return 1; }
...
@@ -201,9 +241,9 @@ int main(int argc, char **argv)
...
@@ -201,9 +241,9 @@ int main(int argc, char **argv)
// convert range of each channel to [0,1] (opencv default is [0,255])
// convert range of each channel to [0,1] (opencv default is [0,255])
mIn /= 255.f;
mIn /= 255.f;
// get image dimensions
// get image dimensions
int
w = mIn.cols; // width
w = mIn.cols; // width
int
h = mIn.rows; // height
h = mIn.rows; // height
int
nc = mIn.channels(); // number of channels
nc = mIn.channels(); // number of channels
cout << "image: " << w << " x " << h << endl;
cout << "image: " << w << " x " << h << endl;
...
@@ -223,29 +263,51 @@ int main(int argc, char **argv)
...
@@ -223,29 +263,51 @@ int main(int argc, char **argv)
// output image number of channels: mOut.channels(), as defined above (nc, 3, or 1)
// output image number of channels: mOut.channels(), as defined above (nc, 3, or 1)
// allocate raw input image array
// allocate raw input image array
float *imgIn = new float[(size_t)w*h*nc];
imgIn = new float[(size_t)w*h*nc];
size_t imageBytes = (size_t)w*h*nc*sizeof(float);
// allocate raw output array (the computation result will be stored in this array, then later converted to mOut for displaying)
// allocate raw output array (the computation result will be stored in this array, then later converted to mOut for displaying)
float *imgOut = new float[(size_t)w*h*mOut.channels()];
float *imgOut = new float[(size_t)w*h*mOut.channels()];
#ifdef CAMERA
// Initialize OpenGL and GLUT for device 0
// and make the OpenGL context current
glutInit(&argc, argv);
cout << __func__ << ": "<< __LINE__ << ": " << endl;
// For camera mode: Make a loop to read in camera frames
glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
#ifdef CAMERA
glutInitWindowPosition(100,100);
// Read a camera image frame every 30 milliseconds:
glutInitWindowSize(640,480);
// cv::waitKey(30) waits 30 milliseconds for a keyboard input,
glutCreateWindow("Project");
// returns a value <0 if no key is pressed during this time, returns immediately with a value >=0 if a key is pressed
glutDisplayFunc(&display);
while (cv::waitKey(30) < 0)
{
cout << __func__ << ": "<< __LINE__ << ": " << endl;
// Get camera image
camera >> mIn;
// Explicitly set device 0
// convert to float representation (opencv loads image values as single bytes by default)
cudaGLSetGLDevice(0);
mIn.convertTo(mIn,CV_32F);
// convert range of each channel to [0,1] (opencv default is [0,255])
cout << __func__ << ": "<< __LINE__ << ": " << endl;
mIn /= 255.f;
#endif
// Create buffer object and register it with CUDA
glGenBuffers(1, &outputVBO);
glBindBuffer(GL_ARRAY_BUFFER, outputVBO);
unsigned int size = w * h * nc * sizeof(float);
glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
cudaGraphicsGLRegisterBuffer(&outputVBO_CUDA,
outputVBO,
cudaGraphicsMapFlagsWriteDiscard);
cout << __func__ << ": "<< __LINE__ << ": " << endl;
// Launch rendering loop
glutMainLoop();
cout << __func__ << ": "<< __LINE__ << ": " << endl;
atexit(bye);
#else // CAMERA
size_t imageBytes = (size_t)w*h*nc*sizeof(float);
// Init raw input image array
// Init raw input image array
// opencv images are interleaved: rgb rgb rgb... (actually bgr bgr bgr...)
// opencv images are interleaved: rgb rgb rgb... (actually bgr bgr bgr...)
...
@@ -257,7 +319,7 @@ int main(int argc, char **argv)
...
@@ -257,7 +319,7 @@ int main(int argc, char **argv)
dim3 grid = make_grid(dim3(w, h, 1), block);
dim3 grid = make_grid(dim3(w, h, 1), block);
Timer timer; timer.start();
Timer timer; timer.start();
float *d_F, *d_U, *d_vx, *d_vy;
//
float *d_F, *d_U, *d_vx, *d_vy;
cudaMalloc(&d_F, imageBytes);
cudaMalloc(&d_F, imageBytes);
cudaMalloc(&d_U, imageBytes);
cudaMalloc(&d_U, imageBytes);
cudaMalloc(&d_vx, imageBytes);
cudaMalloc(&d_vx, imageBytes);
...
@@ -267,7 +329,7 @@ int main(int argc, char **argv)
...
@@ -267,7 +329,7 @@ int main(int argc, char **argv)
for (int n = 0; n < N; n++) {
for (int n = 0; n < N; n++) {
norm_grad<<< grid, block >>>(d_U, d_vx, d_vy, w, h);
norm_grad<<< grid, block >>>(d_U, d_vx, d_vy, w, h);
update<<< grid, block >>>(d_U, d_F, d_vx, d_vy, w, h, lambda, tau);
update<<< grid, block >>>(d_U, d_
U, d_
F, d_vx, d_vy, w, h, lambda, tau);
}
}
cudaMemcpy(imgOut, d_U, imageBytes, cudaMemcpyDeviceToHost);
cudaMemcpy(imgOut, d_U, imageBytes, cudaMemcpyDeviceToHost);
...
@@ -279,10 +341,6 @@ int main(int argc, char **argv)
...
@@ -279,10 +341,6 @@ int main(int argc, char **argv)
cout << "time: " << t*1000 << " ms" << endl;
cout << "time: " << t*1000 << " ms" << endl;
// show input image
// show input image
showImage("Input", mIn, 100, 100); // show at position (x_from_left=100,y_from_above=100)
showImage("Input", mIn, 100, 100); // show at position (x_from_left=100,y_from_above=100)
...
@@ -292,16 +350,8 @@ int main(int argc, char **argv)
...
@@ -292,16 +350,8 @@ int main(int argc, char **argv)
// ### Display your own output images here as needed
// ### Display your own output images here as needed
#ifdef CAMERA
// end of camera loop
}
#else
// wait for key inputs
// wait for key inputs
cv::waitKey(0);
cv::waitKey(0);
#endif
// save input and result
// save input and result
cv::imwrite("image_input.png",mIn*255.f); // "imwrite" assumes channel range [0,255]
cv::imwrite("image_input.png",mIn*255.f); // "imwrite" assumes channel range [0,255]
...
@@ -313,8 +363,84 @@ int main(int argc, char **argv)
...
@@ -313,8 +363,84 @@ int main(int argc, char **argv)
// close all opencv windows
// close all opencv windows
cvDestroyAllWindows();
cvDestroyAllWindows();
return 0;
return 0;
#endif
}
}
void display()
{
cout << __func__ << ": "<< __LINE__ << ": " << endl;
float *d_output;
cudaGraphicsMapResources(1, &outputVBO_CUDA, 0);
size_t num_bytes;
cudaGraphicsResourceGetMappedPointer((void**)&d_output, &num_bytes, outputVBO_CUDA);
size_t imageBytes = (size_t)w*h*nc*sizeof(float);
cout << __func__ << ": "<< __LINE__ << ": " << endl;
// Read a camera image frame every 30 milliseconds:
// cv::waitKey(30) waits 30 milliseconds for a keyboard input,
// returns a value <0 if no key is pressed during this time, returns immediately with a value >=0 if a key is pressed
cv::waitKey(30);
// Get camera image
camera >> mIn;
// convert to float representation (opencv loads image values as single bytes by default)
mIn.convertTo(mIn,CV_32F);
// convert range of each channel to [0,1] (opencv default is [0,255])
mIn /= 255.f;
// Init raw input image array
// opencv images are interleaved: rgb rgb rgb... (actually bgr bgr bgr...)
// But for CUDA it's better to work with layered images: rrr... ggg... bbb...
// So we will convert as necessary, using interleaved "cv::Mat" for loading/saving/displaying, and layered "float*" for CUDA computations
convert_mat_to_layered (imgIn, mIn);
dim3 block(32, 16);
dim3 grid = make_grid(dim3(w, h, 1), block);
Timer timer; timer.start();
// float *d_F, *d_U, *d_vx, *d_vy;
cudaMalloc(&d_F, imageBytes);
cudaMalloc(&d_U, imageBytes);
cudaMalloc(&d_vx, imageBytes);
cudaMalloc(&d_vy, imageBytes);
cudaMemcpy(d_F, imgIn, imageBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_U, imgIn, imageBytes, cudaMemcpyHostToDevice);
for (int n = 0; n < N; n++) {
norm_grad<<< grid, block >>>(d_U, d_vx, d_vy, w, h);
update<<< grid, block >>>(d_output, d_U, d_F, d_vx, d_vy, w, h, lambda, tau);
}
// cudaMemcpy(imgOut, d_U, imageBytes, cudaMemcpyDeviceToHost);
cudaFree(d_F);
cudaFree(d_U);
cudaFree(d_vx);
cudaFree(d_vy);
timer.end(); float t = timer.get(); // elapsed time in seconds
cout << "time: " << t*1000 << " ms" << endl;
// Unmap buffer object
cudaGraphicsUnmapResources(1, &outputVBO_CUDA, 0);
// Render from buffer object
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBindBuffer(GL_ARRAY_BUFFER, outputVBO);
glVertexPointer(4, GL_FLOAT, 0, 0);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_POINTS, 0, w * h);
glDisableClientState(GL_VERTEX_ARRAY);
// Swap buffers
glutSwapBuffers();
glutPostRedisplay();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment