Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
C
cuda_lab
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Gaurav Kukreja
cuda_lab
Commits
6cf20bce
Commit
6cf20bce
authored
Mar 27, 2014
by
Ravi
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
interoparability with primal dual - fast execution
parent
20663a73
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
430 additions
and
461 deletions
+430
-461
main.cu
miklos/project_interop/main.cu
+430
-461
No files found.
miklos/project_interop/main.cu
View file @
6cf20bce
// ###
// ###
// ### Practical Course: GPU Programming in Computer Vision
// ###
// ###
// ### Technical University Munich, Computer Vision Group
// ### Winter Semester 2013/2014, March 3 - April 4
// ###
// ###
// ### Evgeny Strekalovskiy, Maria Klodt, Jan Stuehmer, Mohamed Souiai
// ###
// ###
// ###
// ###
// ###
// ### Miklos Homolya, miklos.homolya@tum.de, p056
// ### Ravikishore Kommajosyula, r.kommajosyula@tum.de, p057
// ### Gaurav Kukreja, gaurav.kukreja@tum.de, p058
// ###
// ###
#define GL_GLEXT_PROTOTYPES
#include <GL/glut.h>
#include "cuda_gl_interop.h"
#include "aux.h"
#include <iostream>
using namespace std;
/************************************************************************
*** GLOBAL VARIABLES *****
************************************************************************/
int repeats;
bool gray;
float lambda;
float tau;
int N;
float c1;
float c2;
cv::VideoCapture camera(0);
cv::Mat mIn;
int w;
int h;
int nc;
// uncomment to use the camera
#define CAMERA
template<typename T>
__device__ __host__ T min(T a, T b)
{
return (a < b) ? a : b;
}
template<typename T>
__device__ __host__ T max(T a, T b)
{
return (a > b) ? a : b;
}
template<typename T>
__device__ __host__ T clamp(T m, T x, T M)
{
return max(m, min(x, M));
}
/**
* Computes the normalized gradient.
*
* @param U input image (single-channel)
* @param vx x-coordinate of result
* @param vy y-coordinate of result
* @param w width of image (pixels)
* @param h height of image (pixels)
*/
__global__ void norm_grad(float *U, float *vx, float *vy, int w, int h)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
if (x < w && y < h) {
size_t i = x + (size_t)w*y;
float ux = ((x+1 < w) ? (U[i + 1] - U[i]) : 0);
float uy = ((y+1 < h) ? (U[i + w] - U[i]) : 0);
float gn = sqrtf(ux*ux + uy*uy + FLT_EPSILON);
vx[i] = ux / gn;
vy[i] = uy / gn;
}
}
/**
* nu (Greek letter) function penalizes being outside the interval [0; 1].
*/
__device__ float nu(float u)
{
if (u < 0.f)
return -2.f;
if (u > 1.f)
return +2.f;
return 0.f;
}
/**
* Calculate s(x) = (c1 - f(x))^2 - (c2 - f(x))^2.
*
* @param F original input image (single-channel)
* @param S result (single-channel)
* @param w width of image (pixels)
* @param h height of image (pixels)
*/
__global__ void calculate_S(float *F, float *S, int w, int h, float c1, float c2)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
if (x < w && y < h) {
size_t i = x + (size_t)w*y;
S[i] = (c1 - F[i])*(c1 - F[i]) - (c2 - F[i])*(c2 - F[i]);
}
}
/**
* Update approximation.
*
* @param U approximation of solution (single-channel)
* @param S update component from input image (single-channel)
* @param vx normalized gradient of U (x-coordinate)
* @param vy normalized gradient of U (y-coordinate)
* @param w width of image (pixels)
* @param h height of image (pixels)
* @param lambda weight of S
* @param alpha weight of nu
* @param tau update coefficient
*/
#ifdef CAMERA
__global__ void update(uchar4* output, float *U, float *S, float *vx, float *vy,
int w, int h, float lambda, float alpha, float tau)
#else
__global__ void update(float *U, float *S, float *vx, float *vy,
int w, int h, float lambda, float alpha, float tau)
#endif
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
if (x < w && y < h) {
size_t i = x + (size_t)w*y;
// smoothness (functional derivative of energy)
float dx_vx = ((x+1 < w) ? vx[i] : 0) - ((x > 0) ? vx[i - 1] : 0);
float dy_vy = ((y+1 < h) ? vy[i] : 0) - ((y > 0) ? vy[i - w] : 0);
float div_v = dx_vx + dy_vy;
// explicit Euler update rule
U[i] += tau * (div_v - lambda * S[i] - alpha * nu(U[i]));
#ifdef CAMERA
output[w*h-i-1].x = (uchar)(U[i] * 255.f);
output[w*h-i-1].y = output[w*h-i-1].x;
output[w*h-i-1].z = output[w*h-i-1].x;
output[w*h-i-1].w = 255;
#endif
}
}
inline int div_ceil(int n, int b) { return (n + b - 1) / b; }
inline dim3 make_grid(dim3 whole, dim3 block)
{
return dim3(div_ceil(whole.x, block.x),
div_ceil(whole.y, block.y),
div_ceil(whole.z, block.z));
}
GLuint bufferObj;
cudaGraphicsResource * resource;
#define HEIGHT 480
#define WIDTH 640
static void key_func( unsigned char key, int x, int y ) {
switch (key) {
case 27:
// clean up OpenGL and CUDA
cudaGraphicsUnregisterResource( resource );
glBindBuffer( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
glDeleteBuffers( 1, &bufferObj );
exit(0);
}
}
static void draw_func( void ) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Get camera image
camera >> mIn;
if(gray)
cvtColor(mIn, mIn, CV_BGR2GRAY);
// convert to float representation (opencv loads image values as single bytes by default)
mIn.convertTo(mIn,CV_32F);
// convert range of each channel to [0,1] (opencv default is [0,255])
mIn /= 255.f;
uchar4* d_output;
size_t size;
// allocate raw input image array
float *imgIn = new float[(size_t)w*h*nc];
size_t imageBytes = (size_t)w*h*nc*sizeof(float);
cudaGraphicsMapResources (1, &resource, NULL);
cudaGraphicsResourceGetMappedPointer( (void**) &d_output, &size, resource);
// Init raw input image array
// opencv images are interleaved: rgb rgb rgb... (actually bgr bgr bgr...)
// But for CUDA it's better to work with layered images: rrr... ggg... bbb...
// So we will convert as necessary, using interleaved "cv::Mat" for loading/saving/displaying, and layered "float*" for CUDA computations
convert_mat_to_layered (imgIn, mIn);
dim3 block(32, 16);
dim3 grid = make_grid(dim3(w, h, 1), block);
Timer timer; timer.start();
float *d_U, *d_S, *d_vx, *d_vy;
cudaMalloc(&d_U, imageBytes);
cudaMalloc(&d_S, imageBytes);
cudaMalloc(&d_vx, imageBytes);
cudaMalloc(&d_vy, imageBytes);
cudaMemcpy(d_U, imgIn, imageBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_S, imgIn, imageBytes, cudaMemcpyHostToDevice);
calculate_S<<< grid, block >>>(d_U, d_S, w, h, c1, c2);
float *S = new float[(size_t)w*h];
cudaMemcpy(S, d_S, imageBytes, cudaMemcpyDeviceToHost);
float S_max = 0.0;
for (size_t i = 0; i < (size_t)w*h; i++)
S_max = max(S_max, fabs(S[i])); // TODO: CPU thing
delete[] S;
float alpha = 0.5 * lambda * S_max;
for (int n = 0; n < N; n++) {
norm_grad<<< grid, block >>>(d_U, d_vx, d_vy, w, h);
update<<< grid, block >>>(d_output, d_U, d_S, d_vx, d_vy, w, h, lambda, alpha, tau);
}
cudaGraphicsUnmapResources(1, &resource, NULL);
cudaFree(d_U);
cudaFree(d_S);
cudaFree(d_vx);
cudaFree(d_vy);
timer.end(); float t = timer.get(); // elapsed time in seconds
cout << "time: " << t*1000 << " ms" << endl;
// show input image
// showImage("Input", mIn, 100, 100); // show at position (x_from_left=100,y_from_above=100)
glDrawPixels( WIDTH, HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE, 0 );
glutSwapBuffers();
glutPostRedisplay();
}
int main(int argc, char **argv)
{
#ifdef CAMERA
cudaGLSetGLDevice(0); CUDA_CHECK;
// these GLUT calls need to be made before the other GL calls
glutInit( &argc, argv );
glutInitDisplayMode( GLUT_DOUBLE | GLUT_RGBA );
glutInitWindowSize( WIDTH, HEIGHT );
glutCreateWindow( "bitmap" );
glGenBuffers(1, &bufferObj);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, bufferObj);
glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, WIDTH * HEIGHT * 4, NULL, GL_DYNAMIC_DRAW_ARB);
cudaGraphicsGLRegisterBuffer( &resource, bufferObj, cudaGraphicsMapFlagsNone);
#endif
// Before the GPU can process your kernels, a so called "CUDA context" must be initialized
// This happens on the very first call to a CUDA function, and takes some time (around half a second)
// We will do it right here, so that the run time measurements are accurate
cudaDeviceSynchronize(); CUDA_CHECK;
// Reading command line parameters:
// getParam("param", var, argc, argv) looks whether "-param xyz" is specified, and if so stores the value "xyz" in "var"
// If "-param" is not specified, the value of "var" remains unchanged
//
// return value: getParam("param", ...) returns true if "-param" is specified, and false otherwise
#ifdef CAMERA
#else
// input image
string image = "";
bool ret = getParam("i", image, argc, argv);
if (!ret) cerr << "ERROR: no image specified" << endl;
if (argc <= 1) { cout << "Usage: " << argv[0] << " -i <image> [-repeats <repeats>] [-gray]" << endl; return 1; }
#endif
// number of computation repetitions to get a better run time measurement
repeats = 1;
getParam("repeats", repeats, argc, argv);
cout << "repeats: " << repeats << endl;
// load the input image as grayscale if "-gray" is specifed
gray = true;
// always true: getParam("gray", gray, argc, argv);
cout << "gray: " << gray << endl;
// ### Define your own parameters here as needed
lambda = 0.8;
getParam("lambda", lambda, argc, argv);
cout << "λ: " << lambda << endl;
tau = 0.01;
getParam("tau", tau, argc, argv);
cout << "τ: " << tau << endl;
N = 2000;
getParam("N", N, argc, argv);
cout << "N: " << N << endl;
c1 = 0.65;
getParam("c1", c1, argc, argv);
cout << "c1: " << c1 << endl;
c2 = 0.00;
getParam("c2", c2, argc, argv);
cout << "c2: " << c2 << endl;
// Init camera / Load input image
#ifdef CAMERA
// Init camera
if(!camera.isOpened()) { cerr << "ERROR: Could not open camera" << endl; return 1; }
int camW = 640;
int camH = 480;
camera.set(CV_CAP_PROP_FRAME_WIDTH,camW);
camera.set(CV_CAP_PROP_FRAME_HEIGHT,camH);
// read in first frame to get the dimensions
camera >> mIn;
if(gray)
cvtColor(mIn, mIn, CV_BGR2GRAY);
#else
// Load the input image using opencv (load as grayscale if "gray==true", otherwise as is (may be color or grayscale))
mIn = cv::imread(image.c_str(), (gray? CV_LOAD_IMAGE_GRAYSCALE : -1));
// check
if (mIn.data == NULL) { cerr << "ERROR: Could not load image " << image << endl; return 1; }
#endif
// convert to float representation (opencv loads image values as single bytes by default)
mIn.convertTo(mIn,CV_32F);
// convert range of each channel to [0,1] (opencv default is [0,255])
mIn /= 255.f;
// get image dimensions
w = mIn.cols; // width
h = mIn.rows; // height
nc = mIn.channels(); // number of channels
cout << "image: " << w << " x " << h << endl;
// Set the output image format
cv::Mat mOut(h,w,mIn.type()); // mOut will have the same number of channels as the input image, nc layers
// ### Define your own output images here as needed
// For camera mode: Make a loop to read in camera frames
#ifdef CAMERA
glutKeyboardFunc (key_func);
glutDisplayFunc (draw_func);
glutMainLoop();
#else
// Allocate arrays
// input/output image width: w
// input/output image height: h
// input image number of channels: nc
// output image number of channels: mOut.channels(), as defined above (nc, 3, or 1)
// allocate raw input image array
float *imgIn = new float[(size_t)w*h*nc];
size_t imageBytes = (size_t)w*h*nc*sizeof(float);
// allocate raw output array (the computation result will be stored in this array, then later converted to mOut for displaying)
float *imgOut = new float[(size_t)w*h*mOut.channels()];
// Init raw input image array
// opencv images are interleaved: rgb rgb rgb... (actually bgr bgr bgr...)
// But for CUDA it's better to work with layered images: rrr... ggg... bbb...
// So we will convert as necessary, using interleaved "cv::Mat" for loading/saving/displaying, and layered "float*" for CUDA computations
convert_mat_to_layered (imgIn, mIn);
dim3 block(32, 16);
dim3 grid = make_grid(dim3(w, h, 1), block);
Timer timer; timer.start();
float *d_U, *d_S, *d_vx, *d_vy;
cudaMalloc(&d_U, imageBytes);
cudaMalloc(&d_S, imageBytes);
cudaMalloc(&d_vx, imageBytes);
cudaMalloc(&d_vy, imageBytes);
cudaMemcpy(d_U, imgIn, imageBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_S, imgIn, imageBytes, cudaMemcpyHostToDevice);
calculate_S<<< grid, block >>>(d_U, d_S, w, h, c1, c2);
float *S = new float[(size_t)w*h];
cudaMemcpy(S, d_S, imageBytes, cudaMemcpyDeviceToHost);
float S_max = 0.0;
for (size_t i = 0; i < (size_t)w*h; i++)
S_max = max(S_max, fabs(S[i])); // TODO: CPU thing
delete[] S;
float alpha = 0.5 * lambda * S_max;
for (int n = 0; n < N; n++) {
norm_grad<<< grid, block >>>(d_U, d_vx, d_vy, w, h);
update<<< grid, block >>>(d_U, d_S, d_vx, d_vy, w, h, lambda, alpha, tau);
}
cudaMemcpy(imgOut, d_U, imageBytes, cudaMemcpyDeviceToHost);
cudaFree(d_U);
cudaFree(d_S);
cudaFree(d_vx);
cudaFree(d_vy);
timer.end(); float t = timer.get(); // elapsed time in seconds
cout << "time: " << t*1000 << " ms" << endl;
// show input image
showImage("Input", mIn, 100, 100); // show at position (x_from_left=100,y_from_above=100)
// show output image: first convert to interleaved opencv format from the layered raw array
convert_layered_to_mat(mOut, imgOut);
showImage("Output", mOut, 100+w+40, 100);
// ### Display your own output images here as needed
// wait for key inputs
cv::waitKey(0);
// save input and result
cv::imwrite("image_input.png",mIn*255.f); // "imwrite" assumes channel range [0,255]
cv::imwrite("image_result.png",mOut*255.f);
// free allocated arrays
delete[] imgIn;
delete[] imgOut;
#endif
// close all opencv windows
cvDestroyAllWindows();
return 0;
}
// ###
// ###
// ### Practical Course: GPU Programming in Computer Vision
// ###
// ###
// ### Technical University Munich, Computer Vision Group
// ### Winter Semester 2013/2014, March 3 - April 4
// ###
// ###
// ### Evgeny Strekalovskiy, Maria Klodt, Jan Stuehmer, Mohamed Souiai
// ###
// ###
// ###
// ###
// ###
// ### Miklos Homolya, miklos.homolya@tum.de, p056
// ### Ravikishore Kommajosyula, r.kommajosyula@tum.de, p057
// ### Gaurav Kukreja, gaurav.kukreja@tum.de, p058
// ###
// ###
#define GL_GLEXT_PROTOTYPES
#include <GL/glut.h>
#include "cuda_gl_interop.h"
#include "aux.h"
#include <iostream>
using namespace std;
/************************************************************************
*** GLOBAL VARIABLES *****
************************************************************************/
int repeats;
bool gray;
float lambda;
float tau;
int N;
float c1;
float c2;
float sigma;
cv::VideoCapture camera(0);
cv::Mat mIn;
int w;
int h;
int nc;
// uncomment to use the camera
#define CAMERA
template<typename T>
__device__ __host__ T min(T a, T b)
{
return (a < b) ? a : b;
}
template<typename T>
__device__ __host__ T max(T a, T b)
{
return (a > b) ? a : b;
}
template<typename T>
__device__ __host__ T clamp(T m, T x, T M)
{
return max(m, min(x, M));
}
__global__ void calculate_F(float *U, float *F, int w, int h, float c1, float c2, float lambda)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
if (x < w && y < h) {
size_t i = x + (size_t)w*y;
F[i] = lambda * ((c1 - U[i])*(c1 - U[i]) - (c2 - U[i])*(c2 - U[i]));
}
}
__device__ float diff_i(float *M, int w, int h, int x, int y)
{
size_t i = x + (size_t)w*y;
return (x+1 < w) ? (M[i + 1] - M[i]) : 0.f;
}
__device__ float diff_j(float *M, int w, int h, int x, int y)
{
size_t i = x + (size_t)w*y;
return (y+1 < h) ? (M[i + w] - M[i]) : 0.f;
}
__global__ void update_Xij(float *Xi, float *Xj, float *T, float *U, int w, int h, float sigma)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
if (x < w && y < h) {
size_t i = x + (size_t)w*y;
float xi = Xi[i] - sigma * (2 * diff_i(U, w, h, x, y) - diff_i(T, w, h, x, y));
float xj = Xj[i] - sigma * (2 * diff_j(U, w, h, x, y) - diff_j(T, w, h, x, y));
float dn = max(1.f, sqrtf(xi*xi + xj*xj));
Xi[i] = xi / dn;
Xj[i] = xj / dn;
}
}
__device__ float divergence(float *X, float *Y, int w, int h, int x, int y)
{
size_t i = x + (size_t)w*y;
float dx_x = ((x+1 < w) ? X[i] : 0.f) - ((x > 0) ? X[i - 1] : 0.f);
float dy_y = ((y+1 < h) ? Y[i] : 0.f) - ((y > 0) ? Y[i - w] : 0.f);
return dx_x + dy_y;
}
__global__ void update_U(uchar4* output, float *T, float *Xi, float *Xj, float *F, float *U, int w, int h, float tau)
{
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
if (x < w && y < h) {
size_t i = x + (size_t)w*y;
U[i] = clamp(0.f, T[i] - tau * (divergence(Xi, Xj, w, h, x, y) + F[i]), 1.f);
uchar temp_res = (uchar)(U[i] * 255.f);
output[w*h-i-1].x = temp_res;
output[w*h-i-1].y = temp_res;
output[w*h-i-1].z = temp_res;
output[w*h-i-1].w = 255;
}
}
inline int div_ceil(int n, int b) { return (n + b - 1) / b; }
inline dim3 make_grid(dim3 whole, dim3 block)
{
return dim3(div_ceil(whole.x, block.x),
div_ceil(whole.y, block.y),
div_ceil(whole.z, block.z));
}
GLuint bufferObj;
cudaGraphicsResource * resource;
#define HEIGHT 480
#define WIDTH 640
static void key_func( unsigned char key, int x, int y ) {
switch (key) {
case 27:
// clean up OpenGL and CUDA
cudaGraphicsUnregisterResource( resource );
glBindBuffer( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
glDeleteBuffers( 1, &bufferObj );
exit(0);
}
}
static void draw_func( void ) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Get camera image
camera >> mIn;
if(gray)
cvtColor(mIn, mIn, CV_BGR2GRAY);
// convert to float representation (opencv loads image values as single bytes by default)
mIn.convertTo(mIn,CV_32F);
// convert range of each channel to [0,1] (opencv default is [0,255])
mIn /= 255.f;
uchar4* d_output;
size_t size;
// allocate raw input image array
float *imgIn = new float[(size_t)w*h*nc];
size_t imageBytes = (size_t)w*h*nc*sizeof(float);
cudaGraphicsMapResources (1, &resource, NULL);
cudaGraphicsResourceGetMappedPointer( (void**) &d_output, &size, resource);
// Init raw input image array
// opencv images are interleaved: rgb rgb rgb... (actually bgr bgr bgr...)
// But for CUDA it's better to work with layered images: rrr... ggg... bbb...
// So we will convert as necessary, using interleaved "cv::Mat" for loading/saving/displaying, and layered "float*" for CUDA computations
convert_mat_to_layered (imgIn, mIn);
dim3 block(32, 16);
dim3 grid = make_grid(dim3(w, h, 1), block);
Timer timer; timer.start();
float *d_T, *d_U, *d_F, *d_Xi, *d_Xj;
cudaMalloc(&d_T, imageBytes);
cudaMalloc(&d_U, imageBytes);
cudaMalloc(&d_F, imageBytes);
cudaMalloc(&d_Xi, imageBytes);
cudaMalloc(&d_Xj, imageBytes);
cudaMemcpy(d_T, imgIn, imageBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_U, d_T, imageBytes, cudaMemcpyDeviceToDevice);
cudaMemset(d_Xi, 0, imageBytes);
cudaMemset(d_Xj, 0, imageBytes);
calculate_F<<< grid, block >>>(d_U, d_F, w, h, c1, c2, lambda);
for (int n = 0; n < N; n++) {
update_Xij<<< grid, block >>>(d_Xi, d_Xj, d_T, d_U, w, h, sigma);
std::swap(d_U, d_T);
update_U<<< grid, block >>>(d_output, d_T, d_Xi, d_Xj, d_F, d_U, w, h, tau);
}
// cudaMemcpy(imgOut, d_U, imageBytes, cudaMemcpyDeviceToHost);
cudaGraphicsUnmapResources(1, &resource, NULL);
cudaFree(d_T);
cudaFree(d_U);
cudaFree(d_F);
cudaFree(d_Xi);
cudaFree(d_Xj);
timer.end(); float t = timer.get(); // elapsed time in seconds
cout << "time: " << t*1000 << " ms" << endl;
// show input image
// showImage("Input", mIn, 100, 100); // show at position (x_from_left=100,y_from_above=100)
glDrawPixels( WIDTH, HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE, 0 );
glutSwapBuffers();
glutPostRedisplay();
}
int main(int argc, char **argv)
{
#ifdef CAMERA
cudaGLSetGLDevice(0); CUDA_CHECK;
// these GLUT calls need to be made before the other GL calls
glutInit( &argc, argv );
glutInitDisplayMode( GLUT_DOUBLE | GLUT_RGBA );
glutInitWindowSize( WIDTH, HEIGHT );
glutCreateWindow( "bitmap" );
glGenBuffers(1, &bufferObj);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, bufferObj);
glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, WIDTH * HEIGHT * 4, NULL, GL_DYNAMIC_DRAW_ARB);
cudaGraphicsGLRegisterBuffer( &resource, bufferObj, cudaGraphicsMapFlagsNone);
#endif
// Before the GPU can process your kernels, a so called "CUDA context" must be initialized
// This happens on the very first call to a CUDA function, and takes some time (around half a second)
// We will do it right here, so that the run time measurements are accurate
cudaDeviceSynchronize(); CUDA_CHECK;
// Reading command line parameters:
// getParam("param", var, argc, argv) looks whether "-param xyz" is specified, and if so stores the value "xyz" in "var"
// If "-param" is not specified, the value of "var" remains unchanged
//
// return value: getParam("param", ...) returns true if "-param" is specified, and false otherwise
#ifdef CAMERA
#else
// input image
string image = "";
bool ret = getParam("i", image, argc, argv);
if (!ret) cerr << "ERROR: no image specified" << endl;
if (argc <= 1) { cout << "Usage: " << argv[0] << " -i <image> [-repeats <repeats>] [-gray]" << endl; return 1; }
#endif
// number of computation repetitions to get a better run time measurement
repeats = 1;
getParam("repeats", repeats, argc, argv);
cout << "repeats: " << repeats << endl;
// load the input image as grayscale if "-gray" is specifed
gray = true;
// always true: getParam("gray", gray, argc, argv);
cout << "gray: " << gray << endl;
// ### Define your own parameters here as needed
lambda = 1.0;
getParam("lambda", lambda, argc, argv);
cout << "λ: " << lambda << endl;
sigma = 0.4;
getParam("sigma", sigma, argc, argv);
cout << "σ: " << sigma << endl;
tau = 0.4;
getParam("tau", tau, argc, argv);
cout << "τ: " << tau << endl;
N = 160;
getParam("N", N, argc, argv);
cout << "N: " << N << endl;
c1 = 1.0;
getParam("c1", c1, argc, argv);
cout << "c1: " << c1 << endl;
c2 = 0.00;
getParam("c2", c2, argc, argv);
cout << "c2: " << c2 << endl;
// Init camera / Load input image
#ifdef CAMERA
// Init camera
if(!camera.isOpened()) { cerr << "ERROR: Could not open camera" << endl; return 1; }
int camW = 640;
int camH = 480;
camera.set(CV_CAP_PROP_FRAME_WIDTH,camW);
camera.set(CV_CAP_PROP_FRAME_HEIGHT,camH);
// read in first frame to get the dimensions
camera >> mIn;
if(gray)
cvtColor(mIn, mIn, CV_BGR2GRAY);
#else
// Load the input image using opencv (load as grayscale if "gray==true", otherwise as is (may be color or grayscale))
mIn = cv::imread(image.c_str(), (gray? CV_LOAD_IMAGE_GRAYSCALE : -1));
// check
if (mIn.data == NULL) { cerr << "ERROR: Could not load image " << image << endl; return 1; }
#endif
// convert to float representation (opencv loads image values as single bytes by default)
mIn.convertTo(mIn,CV_32F);
// convert range of each channel to [0,1] (opencv default is [0,255])
mIn /= 255.f;
// get image dimensions
w = mIn.cols; // width
h = mIn.rows; // height
nc = mIn.channels(); // number of channels
cout << "image: " << w << " x " << h << endl;
// Set the output image format
cv::Mat mOut(h,w,mIn.type()); // mOut will have the same number of channels as the input image, nc layers
// ### Define your own output images here as needed
// For camera mode: Make a loop to read in camera frames
#ifdef CAMERA
glutKeyboardFunc (key_func);
glutDisplayFunc (draw_func);
glutMainLoop();
#else
// Allocate arrays
// input/output image width: w
// input/output image height: h
// input image number of channels: nc
// output image number of channels: mOut.channels(), as defined above (nc, 3, or 1)
// allocate raw input image array
float *imgIn = new float[(size_t)w*h*nc];
size_t imageBytes = (size_t)w*h*nc*sizeof(float);
// allocate raw output array (the computation result will be stored in this array, then later converted to mOut for displaying)
float *imgOut = new float[(size_t)w*h*mOut.channels()];
// Init raw input image array
// opencv images are interleaved: rgb rgb rgb... (actually bgr bgr bgr...)
// But for CUDA it's better to work with layered images: rrr... ggg... bbb...
// So we will convert as necessary, using interleaved "cv::Mat" for loading/saving/displaying, and layered "float*" for CUDA computations
convert_mat_to_layered (imgIn, mIn);
dim3 block(32, 16);
dim3 grid = make_grid(dim3(w, h, 1), block);
Timer timer; timer.start();
float *d_U, *d_S, *d_vx, *d_vy;
cudaMalloc(&d_U, imageBytes);
cudaMalloc(&d_S, imageBytes);
cudaMalloc(&d_vx, imageBytes);
cudaMalloc(&d_vy, imageBytes);
cudaMemcpy(d_U, imgIn, imageBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_S, imgIn, imageBytes, cudaMemcpyHostToDevice);
calculate_S<<< grid, block >>>(d_U, d_S, w, h, c1, c2);
float *S = new float[(size_t)w*h];
cudaMemcpy(S, d_S, imageBytes, cudaMemcpyDeviceToHost);
float S_max = 0.0;
for (size_t i = 0; i < (size_t)w*h; i++)
S_max = max(S_max, fabs(S[i])); // TODO: CPU thing
delete[] S;
float alpha = 0.5 * lambda * S_max;
for (int n = 0; n < N; n++) {
norm_grad<<< grid, block >>>(d_U, d_vx, d_vy, w, h);
update<<< grid, block >>>(d_U, d_S, d_vx, d_vy, w, h, lambda, alpha, tau);
}
cudaMemcpy(imgOut, d_U, imageBytes, cudaMemcpyDeviceToHost);
cudaFree(d_U);
cudaFree(d_S);
cudaFree(d_vx);
cudaFree(d_vy);
timer.end(); float t = timer.get(); // elapsed time in seconds
cout << "time: " << t*1000 << " ms" << endl;
// show input image
showImage("Input", mIn, 100, 100); // show at position (x_from_left=100,y_from_above=100)
// show output image: first convert to interleaved opencv format from the layered raw array
convert_layered_to_mat(mOut, imgOut);
showImage("Output", mOut, 100+w+40, 100);
// ### Display your own output images here as needed
// wait for key inputs
cv::waitKey(0);
// save input and result
cv::imwrite("image_input.png",mIn*255.f); // "imwrite" assumes channel range [0,255]
cv::imwrite("image_result.png",mOut*255.f);
// free allocated arrays
delete[] imgIn;
delete[] imgOut;
#endif
// close all opencv windows
cvDestroyAllWindows();
return 0;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment